
Easy cleaning of sensor tubes

Variant with nozzle and connecting circular spigot

Variant with bluff body and flange

For all upstream conditions

Tested to VDI 6022

VAV terminal units Type TVLK

Optimised for use in laboratories and on fume cupboards

Plastic circular VAV terminal units for aggressive extract air in laboratories and production facilities

- Casing and damper blade made of flame-resistant polypropylene
- Compact construction, only 400 mm long
- High control accuracy even in case of unfavourable upstream conditions
- Combination with fast-running actuators (air management systems)
- Volume flow rate measurement with bluff body or nozzle
- Slide-out sensor tubes allow for easy cleaning
- Closed blade air leakage to EN 1751, class 4
- Casing air leakage to EN 1751, class C

Optional equipment and accessories

- With flanges on both ends
- Plastic secondary silencer Type CAK for the reduction of air-regenerated noise

VAV terminal units **General** information

TVLK

	Туре			Page	
	TVLK Gene	eral information		TVLK – 2	
	Func	tion		TVLK – 4	
		nical data		TVLK – 5	
		k sizing		TVLK – 7	
		cification text		TVLK – 9	
		er code		TVLK – 10	
	Varia			TVLK – 10 TVLK – 13	
		chments		TVLK – 14	
		ensions and weight	[TVLK – 16	
		llation details		TVLK – 18	
	Dasi	c information and n	lomenciature	TVLK – 21	
Application	Application		and pollution)		
	 Circular LABCONTROL VAV te 	rminal units of	- No metal parts come into co	ontact with the	
	Type TVLK, made of plastic, to		airflow		
	volume flow rate of fume cupbo	ards and fume	 Factory set-up or programm 		
	hoods		aerodynamic function testin	•	
	 Suitable for contaminated air 		 Volume flow rate can be me 		
	 Closed-loop volume flow control 	ol using an	subsequently adjusted on si		
	external power supply	adjustment tool or configura	tion software may		
	 Shut-off by means of switching 	(equipment	be necessary		
	supplied by others)		Nominal sizes		
	Special characteristics		– Bluff body: 250 – 100, 250 –	160	
	 High control accuracy even in case of 		 Nozzle: 250 – D08, 250 – D⁻ 		
	unfavourable upstream condition		- Bluff body available in two s		
	 Integral slide-out differential pressure sensor 		available in three sizes for different volume flo		
	with 3 mm measuring holes (re	sistant to dust	rate ranges		
Description	Variants		demanding acoustic require	ments	
	 TVLK: VAV terminal unit 				
	 TVLK-FL: VAV terminal unit with 	n flanges on	Construction features		
	both ends	3	 Circular casing 		
			 Short casing: 392 mm witho 	ut flange, 400 mn	
	Parts and characteristics		with flange		
	 Ready-to-commission unit which 		 Spigot suitable for ducts acc 		
	mechanical parts and control c	omponents	 Both spigots with same diar 		
	(attachments)	,	 Position of the damper blade 		
	 Averaging differential pressure 		externally at shaft extension		
	volume flow rate measurement	; can be	Materials and surfaces		
	removed for cleaning Damper blade 		 Casing and damper blade n 	nade of flame-	
	 – Damper blade – Factory assembled control con 	nonente	resistant polypropylene (PP		
	(attachments) complete with w		UL 94, V-0	,, 	
	 Aerodynamic functional testing 		- Differential pressure sensor	(with bluff body,	
	test rig prior to shipping of each		nozzle) and plain bearing m		
	 Unit carries test label with relevant 		polypropylene (PP)		
			 Damper blade seal made of 	thermoplastic	
	Attachments		elastomers (TPE)		
	 LABCONTROL: Control compo 		Otomological and social allocation		
	(attachments) for air managem		Standards and guidelines	00	
	 Universal controller: Controller, 		 Hygiene conforms to VDI 60 Closed blade air leakage to 		
	pressure transducer and actua	tors for special	 Closed blade air leakage to Meets the increased require 		
	applications		 Meets the increased require part 4, with regard to the acc 		
	Accessories		part 4, with regard to the acc blade air leakage	Septable Closed	
	 Matching flanges for both ends 	, including seals	 Casing air leakage to EN 17 	51, class C	
		,		,	
	Useful additions	0.4144	Maintenance		
	 Plastic secondary silencer Type 	or WK tor	 Maintenance-free as construit 	untion and	

Useful additions

- Plastic secondary silencer Type CAK for

PD-TVLK-2 **TRO**[®]теснык

11/2017 - DE/en

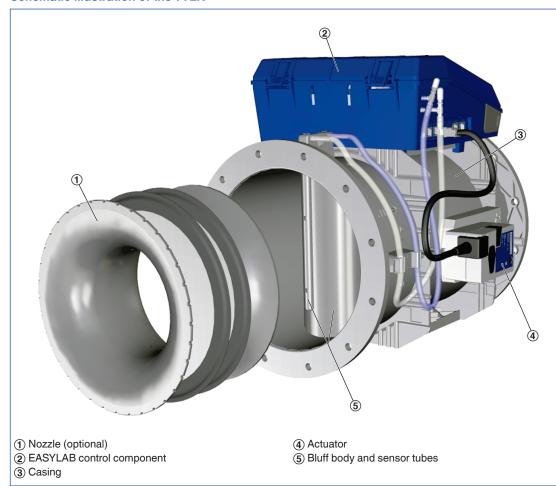
- Maintenance-free as construction and

VAV terminal units General information

materials are not subject to wear

 Zero point correction of the static differential pressure transducer should be carried out once per year (recommendation)

Functional description


For measuring the volume flow rate the VAV terminal unit is fitted either with a bluff body and a differential pressure sensor or with a nozzle. The control components (attachments) include a differential pressure transducer that transforms the differential pressure (effective pressure) into an electric signal, a controller, and an actuator. – Fume cupboard control: The volume flow rate

Schematic illustration of the TVLK

setpoint depends on the control strategy for the fume cupboard and is based on the face velocity, the sash position, or a constant value.

 Volume flow control: The volume flow rate setpoint comes from an external unit.

The controller compares the actual value with the setpoint value and alters the control signal of the actuator if there is a difference between the two values.

PD-TVLK-4 **TROX**[®]TECHNIK

Nominal sizes	250 mm
Volume flow rate range	30 – 515 l/s or 108 – 1854 m³/h
Volume flow rate control range	Approx. 15 to 100 % of the nominal volume flow rate
Minimum differential pressure	5 – 130 Pa
Maximum differential pressure	1000 Pa
Operating temperature	10 – 50 °C

Volume flow rate ranges

The minimum differential pressure of VAV terminal units is an important factor in designing the ductwork and in rating the fan including speed control.

Sufficient duct pressure must be ensured for all operating conditions and for all control units. The measurement points for fan speed control must be selected accordingly. depend on the nominal size and on the control component (attachment) that is installed. The table gives the minimum and maximum values for a VAV terminal unit. Some control components may only have a limited volume flow rate range. This applies in particular to control components with a static differential pressure transducer. For volume flow rate ranges for all control components refer to our Easy Product Finder design programme.

The volume flow rates given for VAV terminal units

	1	2	3	4			
Nominal size	Ý			ΔÝ			
Nominal Size	l/s	m³/h	Pa	Δp _s Pa	Pa	Pa	± %
	55	198	5	5	5	5	10
250-100	140	504	15	15	15	15	7
230-100	220	792	35	35	35	35	6
	360	1296	85	85	85	90	5
	30	108	5	5	5	5	10
250-160	80	288	25	25	25	25	7
250-100	120	432	50	50	50	50	6
	195	702	130	130	130	130	5
	95	342	5	5	5	5	10
250-D08	210	756	10	10	10	10	7
250-008	315	1134	20	20	20	20	6
	515	1854	45	50	55	55	5
	55	198	5	5	5	5	10
250-D10	140	504	10	10	10	10	7
250-010	220	792	20	20	20	20	6
	360	1296	50	50	55	55	5
	30	108	5	5	5	5	10
250-D16	80	288	15	15	15	15	7
250-010	120	432	30	30	30	30	6
	195	702	70	70	75	75	5

TVLK with EASYLAB, volume flow rate ranges and minimum differential pressures

1 TVLK

(2) TVLK with circular silencer CAK, insulation thickness 50 mm, length 500 mm

(3) TVLK with circular silencer CAK, insulation thickness 50 mm, length 1000 mm

TVLK with circular silencer CAK, insulation thickness 50 mm, length 1500 mm

	1	2	3	4			
Nominal size	Ý			ΔÝ			
Nominal size	l/s	m³/h	Pa	Pa	Pa	Ра	± %
	65	234	5	5	5	5	10
250-100	180	648	25	25	25	25	7
200 100	290	1044	55	55	55	60	6
	360	1296	85	85	85	90	5
	35	126	5	5	5	5	10
250-160	100	360	35	35	35	35	7
	160	576	90	90	90	90	6
	195	702	130	130	130	130	5
	95	342	5	5	5	5	10
250-D08	210	756	10	10	10	10	
	315 515	1134 1854	20 45	20 50	20 55	20	6 5
	65	234	45 5	50	55	55 5	5 10
	180	234 648	15	15	15	15	7
250-D10	290	1044	35	35	35	35	6
	360	1296	50	50	55	55	5
	35	126	5	5	5	5	10
	100	360	20	20	20	20	7
250-D16	160	576	50	50	50	50	6
	195	702	70	70	75	75	5

TVLK with Universal controller, volume flow rate ranges and minimum differential pressures

1 TVLK

(2) TVLK with circular silencer CAK, insulation thickness 50 mm, length 500 mm
 (3) TVLK with circular silencer CAK, insulation thickness 50 mm, length 1000 mm
 (4) TVLK with circular silencer CAK, insulation thickness 50 mm, length 1500 mm

Quick sizing tables provide a good overview of the room sound pressure levels that can be expected. Approximate intermediate values can be interpolated. Precise intermediate values and spectral data can be calculated with our Easy Product Finder design programme. The first selection criteria for the nominal size are the actual volume flow rates \dot{V}_{min} and \dot{V}_{max} . The quick sizing tables are based on generally accepted attenuation levels. If the sound pressure level exceeds the required level, a larger air terminal unit and/or a silencer is required.

			Α	ir-regene	rated nois	e	Case-radiated noise
Nominal size	V	V	1	2	3	4	1
Nominal 3120			L _{PA}		L _{PA1}		L _{PA2}
	l/s	m³/h			c	B(A)	
	55	198	40	33	29	26	26
250-100	140	504	46	38	34	31	33
250-100	220	792	47	39	35	31	37
	360	1296	48	39	35	32	42
	30	108	37	32	28	25	22
250-160	80	288	41	35	31	28	29
200-100	120	432	43	37	33	30	32
	195	702	49	42	38	35	40
	95	342	36	26	23	20	23
250-D08	210	756	40	31	27	24	29
200 200	315	1134	41	32	29	26	33
	515	1854	44	34	31	28	38
	55	198	36	28	24	21	24
250-D10	140	504	42	34	30	27	31
200 010	220	792	43	35		28	35
	360	1296	45	37	33	29	38
	30	108	33	28	24	22	21
250-D16	80	288	39	33	30	28	28
200 0.10	120	432	42	36	33	30	31
	195	702	47	42	38	36	38

TVLK with EASYLAB, Sound pressure level at differential pressure 150 Pa

1 TVLK

(2) TVLK with circular silencer CAK, insulation thickness 50 mm, length 500 mm

(3) TVLK with circular silencer CAK, insulation thickness 50 mm, length 1000 mm

(4) TVLK with circular silencer CAK, insulation thickness 50 mm, length 1500 mm

			Air-regenerated noise				Case-radiated noise
Nominal size	V	V	1	2	3	4	1
Nominal Size			L _{PA}		L _{PA1}		L _{PA2}
	l/s	m³/h				lB(A)	
	65	234	41	34	30	27	27
250-100	180	648	46	38	34	31	35
250-100	290	1044	47	39	35	31	40
	360	1296	48	39	35	32	42
	35	126	38	33	29	26	23
250-160	100	360	42	36	32	29	30
250-160	160	576	45	37	34	31	34
	195	702	49	42	38	35	40
	95	342	36	26	23	20	23
250-D08	210	756	40	31	27	24	29
230-200	315	1134	41	32	29	26	33
	515	1854	44	34	31	28	38
	65	234	37	30	26	22	25
250-D10	180	648	43	35	31	28	33
230-010	290	1044	44	36	32	29	36
	360	1296	45	37	33	29	38
	35	126	34	29	25	23	22
250-D16	100	360	41	35	32	29	30
200-010	160	576	43	37	34	32	32
	195	702	47	42	38	36	38

TVLK with VARYCONTROL Universal controller, Sound pressure level at differential pressure 150 Pa

TVLK
 TVLK with circular silencer CAK, insulation thickness 50 mm, length 500 mm
 TVLK with circular silencer CAK, insulation thickness 50 mm, length 1000 mm
 TVLK with circular silencer CAK, insulation thickness 50 mm, length 1500 mm

This specification text describes the general properties of the product. Texts for variants can be generated with our Easy Product Finder design programme.

Circular VAV terminal units made of flameresistant plastic, for variable air volume systems and fume cupboards. Suitable for the control of extract air containing aggressive media since all components coming into contact with the airflow are made of plastic (no interior metal parts). Ready-to-commission unit which consists of the mechanical parts and the electronic control components (attachments). Each unit contains an averaging differential pressure sensor with bluff body or a nozzle for volume flow rate measurement, and a damper blade. Factory assembled control components (attachments) complete with wiring and tubing. Differential pressure sensor with 3 mm measuring holes (resistant to dust and pollution)

Spigot, suitable for ducts according to DIN 8077. Position of the damper blade indicated externally at shaft extension.

Closed blade air leakage to EN 1751, class 4. Casing air leakage to EN 1751, class C.

Special characteristics

- High control accuracy even in case of unfavourable upstream conditions
- Integral slide-out differential pressure sensor with 3 mm measuring holes (resistant to dust and pollution)
- No metal parts come into contact with the airflow
- Factory set-up or programming and aerodynamic function testing
- Volume flow rate can be measured and subsequently adjusted on site; additional adjustment tool or configuration software may be necessary

Materials and surfaces

 Casing and damper blade made of flameresistant polypropylene (PP), flammability to UL 94, V-0

- Differential pressure sensor (with bluff body, or nozzle) and plain bearing made of polypropylene (PP)
- Damper blade seal made of thermoplastic elastomers (TPE)

Technical data

- Nominal sizes: 250 mm
- Volume flow rate range: 30 to 515 l/s or 108 to 1854 m³/h
- Volume flow rate control range: approx. 15 – 100 % of the nominal volume flow rate
- Minimum differential pressure: 5 130 Pa
- Maximum differential pressure: 1000 Pa

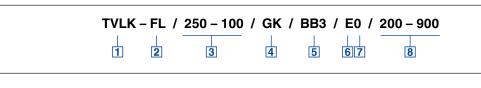
Attachments

Variable volume flow control with electronic EASYLAB controller for fume cupboards.

- Supply voltage 24 V AC
- Fast and stable control
- Static differential pressure measurement
- Fast-running actuator
- Easy commissioning due to plug and play communication system
- Controller is a modular system and can be expanded
- Volume flow rate monitoring

Sizing data

V	
[m³/h]	
Δp _{st}	
[Pa]	


Air-regenerated noise

- L_{PA}
- [dB(A)]

Case-radiated noise

· L_{PA}____ [dB(A)]

TVLK with Universal controller

1 Type

TVLK VAV terminal unit, plastic

2 Flange

No entry: none

FL Flanges on both ends

3 Nominal size

- 250 100 Bluff body 100
- 250 160 Bluff body 160
- 250 D08 Nozzle D08
- 250 D10 Nozzle D10
- 250 D16 Nozzle D16

4 Accessories

- No entry: none
- GK Matching flanges for both ends

5 Attachments (control component)

- **BB3** Universal controller with static differential pressure transducer
- **BP3** Universal controller with MP bus interface and static differential pressure transducer
- **BPG** Universal controller with MP bus interface and static differential pressure transducer, fast-running actuator

Order example: TVLK/250-D16/BPG/E2/150-650

Nominal size

Attachment	Universal controller with MP bus interface and static differential pressure transducer, fast-running actuator
Operating mode	Single
Operating values	150 – 650 m³/h

6 Operating mode

- E Single
- M Master
- S Slave
- F Constant value

7 Signal voltage range

- For the actual and setpoint value signals
- 0 0 10 V DC (only BP3 and BPG)
- 2 2 10 V DC

8 Volume flow rates [m³/h or l/s]

 $\dot{V}_{min} - \dot{V}_{max}$ for factory setting

250 with nozzle D16

TVLK – FL / 250 – 100 / GK	/ ELAB /	FH – VS / ULZS / 200 – 900
	5	6 7 8
1] Type	[7] F	xpansion modules
TVLK VAV terminal unit, plastic		Option 1: Supply voltage
2 Flange	т	No entry: 24 V AC EM-TBE for 230 V AC
No entry: none	U	EM-TRF-USV for 230 V AC, provides
FL Flanges on both ends		uninterruptible power supply (UPS)
3 Nominal size		Option 2: Communication interface
250 – 100 Bluff body 100 250 – 160 Bluff body 160		No entry: none
250 – D08 Nozzle D08	L	EM-LON for LonWorks FTT-10A
250 – D10 Nozzle D10	В	EM-BAC-MOD-01 for BACnet MS/TP
250 – D16 Nozzle D16	M	EM-BAC-MOD-01 for Modbus RTU EM-IP for BACnet/IP, Modbus/IP and
	1	webserver
4 Accessories	R	EM-IP with real time clock
No entry: none GK Matching flanges for both ends		
GR Matching hanges for both ends		Option 3: Automatic zero point correction
5 Attachments (control component)		No entry: none
ELAB EASYLAB controller TCU3 with fast-	Z	EM-AUTOZERO Solenoid valve for
running actuator		automatic zero point correction
6 Equipment function		Option 4: Lighting
With face velocity transducer		No entry: none
FH-VS Face velocity control	S	EM-LIGHT Wired socket for the connection
With sash distance sensor		of lighting and for switching the lighting of
FH-DSLinear control strategy FH-DV Safety-optimised control strategy		off using the control panel (only with EM-TRF or EM-TRF-USV)
With switching steps for switch contacts	\$	
provided by others	8 C	perating values [m³/h or l/s]
FH-2P 2 switching steps		Depending on the equipment function
FH-3P 3 switching steps		VS: V _{min} – V _{max}
Without signalling		DS: V _{min} – V _{max}
FH-F Volume flow rate constant value		DV: $\dot{V}_{min} - \dot{V}_{max}$
		2P: \dot{V}_1 / \dot{V}_2 3P: $\dot{V}_1 / \dot{V}_2 / \dot{V}_3$
		F: $\dot{V}_1 / \dot{V}_2 / \ddot{V}_3$
	Use	ful additions
		Control panel for fume cupboard controlle
		for displaying the functions of the control

system according to EN 14175

BE-SEG-02 OLED display BE-LCD-01 40-character display

Order example: TVLK/250-100/ELAB/FH-VS/200-900 m³/h

Nominal size	250 with bluff body 100
Attachment	EASYLAB controller with fast-running actuator
Equipment function	Fume cupboard control with face velocity transducer
Volume flow rate	200 – 900 m³/h

TVLK with EASYLAB for single controllers

1 Type

TVLK VAV terminal unit, plastic

2 Flange

No entry: noneFL Flanges on both ends

3 Nominal size

- 250 100 Bluff body 100
- 250 160 Bluff body 160
- 250 D08 Nozzle D08
- 250 D10 Nozzle D10
- 250 D16 Nozzle D16

4 Accessories

- No entry: none
- **GK** Matching flanges for both ends

5 Attachments (control component)

ELAB EASYLAB controller TCU3 with fastrunning actuator

6 Equipment function

	Control with single controller
EC	Extract air controller

7 External volume flow rate setting

- E0 Voltage signal 0 10 V DC
- E2 Voltage signal 2 10 V DC
- 2P On-site switch contacts for 2 switching steps
- **3P** On-site switch contacts for 3 switching steps
- F Volume flow rate constant value, without signalling

8 Expansion modules

- Option 1: Supply voltage No entry: 24 V AC
- T EM-TRF for 230 V AC
- U EM-TRF-USV for 230 V AC, provides uninterruptible power supply (UPS)

Option 2: Communication interface No entry: none

- EM-LON for LonWorks FTT-10A
- B EM-BAC-MOD-01 for BACnet MS/TP
- M EM-BAC-MOD-01 for Modbus RTU
- I EM-IP for BACnet/IP, Modbus/IP and webserver
- R EM-IP with real time clock

Option 3: Automatic zero point correction No entry: none

Z EM-AUTOZERO Solenoid valve for automatic zero point correction

9 Operating values [m³/h or l/s, Pa]

E0, E2: $\dot{V}_{min} / \dot{V}_{max}$ 2P: \dot{V}_1 / \dot{V}_2 3P: $\dot{V}_1 / \dot{V}_2 / \dot{V}_3$ F: \dot{V}_1

Order example: TVLK/250-D08/ELAB/E2/400-1600

Nominal size	250 with nozzle D08
Attachment	EASYLAB controller TCU3 with fast-running actuator
External volume flow rate setting	Voltage signal 2 – 10 V DC
Operating values	400 – 1600 m³/h

L

VAV terminal unit, variant TVLK, with bluff body and connecting circular spigot

VAV terminal unit, variant TVLK, with bluff body and flange

VAV terminal unit, variant TVLK, with nozzle and connecting circular spigot

VAV terminal unit, variant TVLK, with nozzle and flange

- VAV terminal unit for the control of variable air

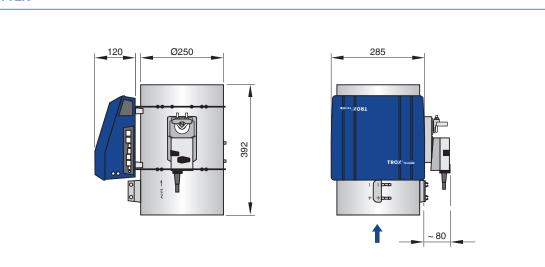
TVLK-FL

 VAV terminal unit for the control of variable air volume flow rates

volume flow rates

- Spigot to make connections to the ducting
- With flanges to make detachable connections to the ductwork

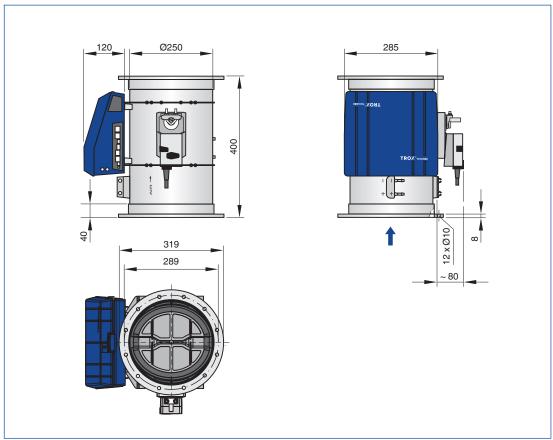
TVLK, VARYCONTROL control components


Order code detail	Controlled variable	Controller	Differential pressure transducer	Actuator
Universal controller,				
static				
BP3		Universal controller with MP bus interface		Actuator
BPG	Volume flow rate	TROX/Belimo	Static, integral	Fast-running actuator
BB3		Universal controller TROX/Belimo	Static, integral	Actuator

TVLK, LABCONTROL control components

Order code detail	Controlled variable	Controller	Differential pressure transducer	Actuator
EASYLAB				
ELAB	Fume cupboard Room supply air Room extract air Room pressure Single controller	EASYLAB controller TCU3	Static, integral	Fast-running actuator

VAV terminal units Dimensions and weight



TVLK

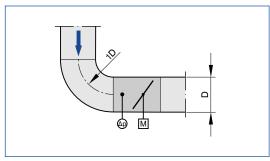
Nominal size	m kg
250	5.1

TVLK-FL

Nominal size	m
	kg
250	5.7

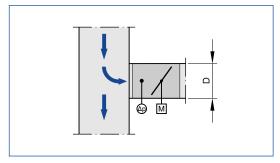
Installation and commissioning

Installation orientation must be as shown on the sticker

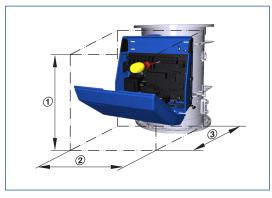

Upstream conditions

The volume flow rate accuracy $\Delta \dot{V}$ applies to a straight upstream section of the duct. Bends, junctions or a narrowing or widening of the duct cause turbulence that may affect measurement. Duct connections, e.g. branches off the main duct, must comply with EN 1505. Some installation situations require straight duct sections upstream.

Space required for commissioning and maintenance

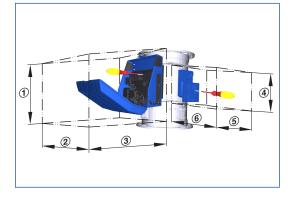

Sufficient space must be kept clear near any attachments to allow for commissioning and maintenance. It may be necessary to provide sufficiently sized inspection access openings.

Bend


A bend with a centre line curvature radius of at least 1D – without an additional straight duct section upstream of the VAV terminal unit – has only a negligible effect on the volume flow rate accuracy.

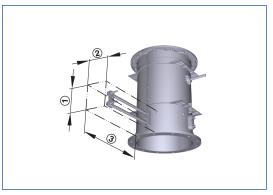
Junction

The stated volume flow rate accuracy $\Delta \dot{V}$ will be achieved even when the VAV terminal unit is installed in a branch just off the main duct. Even the installation on the dome of a fume cupboard will have no adverse effect.


Access to attachments

Space requirement, control component on one side

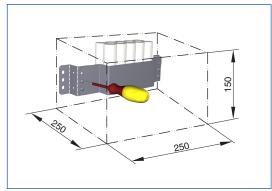
Attachments	1	2	3		
Attachiments	mm				
VARYCONTROL					
Universal controller	300	320	300		


Access to attachments

Space requirement, control components on two sides

Attachments	1	2	3	4	5	6
Attachments			m			
LABCONTROL						
EASYLAB	350	350	400	300	250	300

Access to sensor tubes for cleaning


11/2017 – DE/en **ТКОХ**[®]теснык

Space required for cleaning the sensor tubes

Nominal size	1	2	3	
	mm			
250-1** Bluff body	100	160	D	
250-D** Nozzle	100	160	100	

D: Casing diameter

Access to battery pack

Separate space for fixing and accessing the battery pack (LABCONTROL EASYLAB accessory)

Principal dimensions

ØD [mm]

VAV terminal units made of stainless steel: Outside diameter of the spigot VAV terminal units made of plastic: Inside diameter of the connecting spigot

ØD₁ [mm] Pitch circle diameter of flanges

ØD₂ [mm] Outside diameter of flanges

ØD₄ [mm] Inside diameter of the screw holes of flanges

L [mm] Length of unit including connecting spigot

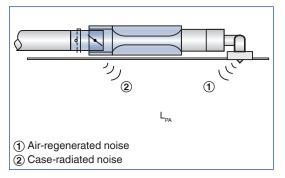
Length of casing or acoustic cladding

B [mm] Duct width

B₁ [mm] Screw hole pitch of flange (horizontal)

Acoustic data

f_m **[Hz]** Octave band centre frequency


L_{PA} [dB(A)]

A-weighted sound pressure level of airregenerated noise of the VAV terminal unit, system attenuation taken into account

L_{PA1} [dB(A)]

A-weighted sound pressure level of airregenerated noise of the VAV terminal unit with secondary silencer, system attenuation taken into account

Definition of noise

B₂ [mm] Outside dimension of flange (width)

B₃ [mm] Width of device

H [mm] Duct height

H₁ [mm] Screw hole pitch of flange (vertical)

H₂ [mm] Outside dimension of flange (height)

H₃ [mm] Unit height

n [] Number of flange screw holes

T [mm] Flange thickness

m [kg]

Unit weight including the minimum required attachments (e.g. Compact controller)

L_{PA2} [dB(A)]

A-weighted sound pressure level of caseregenerated noise of the VAV terminal unit, system attenuation taken into account

L_{PA3} [dB(A)]

A-weighted sound pressure level of caseregenerated noise of the VAV terminal unit with acoustic cladding, system attenuation taken into account

All sound pressure levels are based on 20 µPa.

Volume flow rates

V_{nom} [m³/h] and [l/s] Nominal volume flow rate (100 %)

- The value depends on product type and nominal size
- Values are published on the internet and in technical leaflets, and stored in the Easy

11/2017 – DE/en **ТROX**®тесник

Product Finder design software.

- Reference value for calculating percentages (e.g. V_{max})
- Upper limit of the setting range and maximum volume flow rate setpoint value for the VAV terminal unit

V_{min unit} [m³/h] and [l/s]

- Technically possible minimum volume flow rate The value depends on product type, nominal
- size and control component (attachment) – Values are stored in the Easy Product Finder
- design software
- Lower limit of the setting range and minimum volume flow rate setpoint value for the VAV terminal unit
- Depending on the controller, setpoint values below V_{min unit} (if V_{min} equals zero) may result in unstable control or shut-off

\dot{V}_{max} [m³/h] and [l/s]

Upper limit of the operating range for the VAV terminal unit that can be set by customers

- V_{max} can only be smaller than or equal to V_{nom}
 In case of analog signalling to volume flow
- controllers (which are typically used), the set maximum value (\dot{V}_{max}) is allocated to the

setpoint signal maximum (10 V) (see characteristic)

V_{min} [m³/h] and [l/s]

Lower limit of the operating range for the VAV terminal unit that can be set by customers

- \dot{V}_{min} should be smaller than or equal to \dot{V}_{max}
- Do not set V_{min} smaller than V_{min unit}, otherwise the control may become unstable or the damper blade may close
- In case of analog signalling to volume flow controllers (which are typically used), the set minimum value (V_{min}) is allocated to the setpoint signal minimum (0 or 2 V) (see characteristic)

V [m³/h] and [l/s]

Volume flow rate

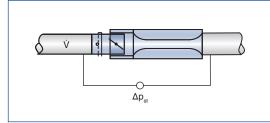
Δ[.] [± %]

Volume flow rate tolerance from setpoint value

Δ່V_{warm} [± %]

Volume flow rate tolerance for the warm air flow of dual duct terminal units

Differential pressure


Δp_{st} [Pa] Static differential pressure

Δp_{st min} [Pa]

Static differential pressure, minimum

 The static minimum differential pressure is equal to the pressure loss of the VAV terminal unit when the damper blade is open, caused by flow resistance (sensor tubes, damper mechanism)

Static differential pressure

- If the pressure on the VAV terminal unit is too low, the setpoint volume flow rate may not be achieved, not even when the damper blade is open
- Important factor in designing the ductwork and in rating the fan including speed control
- Sufficient duct pressure must be ensured for all operating conditions and for all terminal units, and the measurement point or points for speed control must have been selected accordingly to achieve this

Construction

Galvanised sheet steel

- Casing made of galvanised sheet steel
- Parts in contact with the airflow as described for the product type
- External parts, e.g. mounting brackets or covers, are usually made of galvanised sheet steel

Powder-coated surface (P1)

- Casing made of galvanised sheet steel, powder-coated RAL 7001, silver grey
- Parts in contact with the airflow are powdercoated or made of plastic
- Due to production, some parts that come into contact with the airflow may be stainless steel or aluminium, powder-coated
- External parts, e.g. mounting brackets or

11/2017 - DE/en

covers, are usually made of galvanised sheet steel

Stainless steel (A2)

- Casing made of stainless steel 1.4201
- Parts in contact with the airflow are powdercoated or made of stainless steel
- External parts, e.g. mounting brackets or covers, are usually made of galvanised sheet